skip to main content


Search for: All records

Creators/Authors contains: "Campbell, Zachary S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microfluidic devices and systems have entered many areas of chemical engineering, and the rate of their adoption is only increasing. As we approach and adapt to the critical global challenges we face in the near future, it is important to consider the capabilities of flow chemistry and its applications in next-generation technologies for sustainability, energy production, and tailor-made specialty chemicals. We present the introduction of microfluidics into the fundamental unit operations of chemical engineering. We discuss the traits and advantages of microfluidic approaches to different reactive systems, both well-established and emerging, with a focus on the integration of modular microfluidic devices into high-efficiency experimental platforms for accelerated process optimization and intensified continuous manufacturing. Finally, we discuss the current state and new horizons in self-driven experimentation in flow chemistry for both intelligent exploration through the chemical universe and distributed manufacturing. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  2. Titania microspheres have attracted substantial attention for a variety of applications, including ion scavenging, catalysis, and energy generation, though most synthetic techniques are limited to a few basic morphologies and narrow size ranges. Here, an intensified microfluidic strategy for continuous synthesis of anatase titania microspheres is presented. In-flow photo crosslinking, incorporated with a flow reactor and polar aprotic solvent, enables access to precursor compositions up to an order of magnitude higher than those previously reported, with size tunability approaching two orders of magnitude. Morphological and surface area effects associated with precursor composition are explored, resulting in hollow, yolk–shell, macroporous, and dense titania microspheres containing no detectable rutile phase and possessing surface areas exceeding 350 m 2 g −1 post calcination. Furthermore, effects of calcination temperature and time on the surface area, crystallinity and phase composition, and morphology of the synthesized titania microspheres are studied in detail. The synthesized microspheres are shown to remain completely in the anatase phase, even at temperatures up to 900 °C, far beyond the expected phase transition temperature. Thus, the breadth of attainable morphologies, specific surface areas, and phase compositions present a variety of intriguing substrate candidates for such applications as heterogeneous (photo) catalysis, adsorption and ion capture, electrochemistry, and photovoltaics. 
    more » « less
  3. Abstract

    A generalizable and versatile microfluidic approach for facile synthesis of a wide range of metal oxide microparticles using atypical metal‐organic precursors is reported. Microparticles of three single oxide materials, zinc(II) oxide, tin(IV) oxide, and cerium(IV) oxide, as well as a binary rare earth mixed oxide, lanthanum(III) praseodymium(III) oxide, are synthesized in flow. The tin(IV) oxide is shown to vary in composition from 14.2 % to 0 % orthorhombic phase at annealing temperatures ranging from 500 °C to 900 °C, while the lanthanum(III) praseodymium(III) oxide forms at a relatively low temperature of ∼700 °C.

     
    more » « less
  4. Macroporous microbeads are synthesized by microfluidic production of silica-loaded polymeric microdroplets followed by porogen removal via selective etching. Microdroplets are produced in a flow-focusing microreactor to ensure monodispersity with uniform porogen loading. Effects of porogen size and polymer network density on the porosity and effective modulus of the microbeads are studied. 
    more » « less
  5. Abstract

    Controlled synthesis of semiconductor nano/microparticles has attracted substantial attention for use in numerous applications from photovoltaics to photocatalysis and bioimaging due to the breadth of available physicochemical and optoelectronic properties. Microfluidic material synthesis strategies have recently been demonstrated as an effective technique for rapid development, controlled synthesis, and continuous manufacturing of solution‐processed semiconductor nano/microparticles, due to enhanced parametric control enabling precise tuning of material properties, size, and morphologies. In this review, the basics of microfluidic material synthesis approaches complemented with recent advances in the flow fabrication of metal oxide, chalcogenide, and perovskite semiconductor particles are discussed. Furthermore, advancements in artificial intelligence (AI)‐driven materials–space exploration and accelerated formulation optimization using modular microfluidic reactors are outlined. Finally, future directions for the fabrication of semiconducting materials in flow and the implementation of AI with automated microfluidic reactors for accelerated material discovery and development are presented.

     
    more » « less